 A) stroma. B) thylakoids. C) grana. D) photosystem. 			
B) thylakoids.C) grana.			
Op) photosystem.			
Visible light occupies what part of the electromagnetic spectrum?			
(A) the entire spectrum			
B) the entire upper half (with longer wavelengths)			
C) a small portion in the middle			
D) the entire lower half (with shorter wavelengths)			
The colors of light that are most effective for photosynthesis are			
(a) red, blue, and violet.			
B) green, yellow, and orange			
C) infrared and ultraviolet			
D) All colors of light are equally effective.			
A photosystem consists of			
a group of chlorophyll molecules, all of which contribute excited electrons to the synthesis of ATP.			
B) a pair of chlorophyll a molecules.			
C) a group of chlorophyll molecules held together by proteins.			
D) a group of chlorophyll molecules that funnels light energy toward a single chlorophyll b molecule.			
The final product of the Calvin cycle is			
OA) RuBP.			
○ B) G3P.			
C) glucose.			
D) PGA.			
C4 photosynthesis is an adaptation to hot, dry conditions in which			
O A) CO2 is fixed and stored in the leaf.			
B) water is stored in the stem.			
Oc) oxygen is stored in the root.			
D) light energy is stored in chloroplasts.			
C4 photosynthesis is an adaptation to hot, dry conditions in which			
O A) CO2 is fixed and stored in the leaf.			
B) water is stored in the stem.			
O C) oxygen is stored in the root.			
D) light energy is stored in chloroplasts.			

In cellular respiration, energy-depleted electrons are donated to an inorganic molecule. In fermentation, what molecule accepts these electrons?				
© B) ◎ C)	oxygen an organic molecule sulfur an inorganic molecule other than ${\rm O}_2$			
Which of the	following is <i>not</i> a stage of aerobic respiration?			
© B) ◎ C)	glycolysis pyruvate oxidation the Krebs cycle electron transport chain			
Oxidizing which of the following substances yields the most energy?				
© B) ◎ C)	proteins glucose fatty acids water			
The final elec	tron acceptor in lactic acid fermentation is:			
◎ B)	pyruvate NAD ⁺ lactic acid O ₂			
Oxidizing whi	ich of the following substances yields the most energy?			
© B) ◎ C)	proteins glucose fatty acids water			
The final elec	tron acceptor in lactic acid fermentation is:			
◎ B)	pyruvate NAD ⁺ lactic acid O ₂			

Which of the	following techniques has recently aided the study of receptor proteins?
(A)	protein purification
	monoclonal antibodies
	isolation of cell signal molecules
© D)	all of these
Which of the	following describes autocrine signaling?
(A)	Signal molecules released by cells diffuse through the extracellular fluid to other cells.
© B)	Signal molecules enter the organism's circulatory system and travel throughout the body.
•	Signal molecules are released from a cell and bind to receptors on its own plasma membrane.
© D)	Signal molecules are released into a narrow space between cells called a synapse.
Intracellular	receptors usually bind
	water-soluble signals.
	large molecules that act as signals.
	signals on the cell surface.
© D)	lipid-soluble signals.
Which of the	following is <i>not</i> a type of cell surface receptor?
•	chemically gated ion channels
	intracellular receptors
_,	enzymic receptors
© D)	G-protein-linked receptors
Cadherin car	be found in which of the following?
© A)	tight junctions
© B)	anchoring junctions
•	communication junctions
© D)	adherens junctions
Plasmodesm	ata are a type of
© A)	gap junction.
•	anchoring junction.
	communicating junction.
© D)	tight junction.

Plasmodesmata are a type of

A) gap junction.B) anchoring junction.

C) communicating junction.

D) tight junction.

An atom g	ains energy when
	A) an electron is lost from it.
	B) it undergoes oxidation. C) it undergoes reduction.
	b) it undergoes an oxidation-reduction reaction.
Which of t	he following is concerned with the amount of energy in the universe?
	A) the First Law of Thermodynamics
	B) the Second Law of Thermodynamics. C) thermodynamics
	p) entropy
In a chem	ical reaction, if ΔG is negative, it means that
	A) the products contain more free energy than the reactants.
	B) an input of energy is required to break the bonds. C) the reaction will proceed spontaneously.
	b) the reaction is endergonic.
A catalyst	
	allows an endergonic reaction to proceed more quickly.
	 B) increases the activation energy so a reaction can proceed more quickly. C) lowers the amount of energy needed for a reaction to proceed.
	b) is require for an exergonic reaction to occur.
Anabolic r	eactions are reactions that
	A) break chemical bonds.
	B) make chemical bonds.
	c) harvest energy. b) occur in a sequence.
How is a b	oiochemical pathway regulated?
0	A) The product of one reaction becomes the substrate for the next.
	B) The end product replaces the initial substrate in the pathway.
	 The end product inhibits the first enzyme in the pathway by binding to an allosteric site. All of these are correct.
	- ,
_	
_	

How is a biochemical pathway regulated?

- The product of one reaction becomes the substrate for the next.
- B) The end product replaces the initial substrate in the pathway.
- \odot C) The end product inhibits the first enzyme in the pathway by binding to an allosteric site.
- D) All of these are correct.